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Figure 1: FitNibble continuously tracks a user’s diet and provides just-in-time notifications reminding users to log their meals
and snack. This figure shows the flow of the user experience. (1) As soon as the user starts eating, (2) the system sends a
just-in-time notification, (3) prompting the user to fill the food journal and, (4) review their dietary activity for the day.

ABSTRACT
The ultimate goal of automatic diet monitoring systems (ADM) is to
make food journaling as easy as counting steps with a smartwatch.
To achieve this goal, it is essential to understand the utility and
usability of ADM systems in real-world settings. However, this
has been challenging since many ADM systems perform poorly
outside the research labs. Therefore, one of the main focuses of
ADM research has been on improving ecological validity. This pa-
per presents an evaluation of ADM’s utility and usability using an
end-to-end system, FitNibble. FitNibble is robust to many challenges
that real-world settings pose and provides just-in-time notifications
to remind users to journal as soon as they start eating. We con-
ducted a long-term field study to compare traditional self-report
journaling and journaling with ADM in this evaluation. We re-
cruited 13 participants from various backgrounds and asked them
to try each journaling method for nine days. Our results showed
that FitNibble improved adherence by significantly reducing the
number of missed events (19.6% improvement, p = .0132). Results
have shown that participants were highly dependent on FitNibble
in maintaining their journals. Participants also reported increased
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awareness of their dietary patterns, especially with snacking. All
these results highlight the potential of ADM in improving the food
journaling experience.
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1 INTRODUCTION
What we eat has an immediate and long-term impact on our health.
The medical research literature has shown direct links between diet
and chronic illnesses. On the flip side, a healthy diet has always
been helpful in fighting and preventing diseases [8]. As the psycho-
logical response to diet varies between individuals, nutritionists
and physicians have always encouraged patients to keep track of
what they eat and how their body reacts to it to understand better
the impact it has on their health and well-being.

Despite all these benefits, self-monitoring of diet is rare, mainly
because tracking daily activities at high granularity is an arduous
and mundane task [17]. Fitness and sleep tracking have become
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increasingly popular and widely adopted in the last decade. Un-
like sleep and fitness, diet monitoring products have mainly re-
lied on self-report, and automation has proven hard. There are
many research prototypes, but most either do not perform well in
a real-world setting or are, currently, impractical to productize. Re-
searchers have cited several technical and non-technical challenges,
which represent clear barriers for this technology to reach the end-
users [26]. The major technical challenge stems from the complex
nature of the diet monitoring task, as fundamentally, the user needs
to keep track of when they eat, what they eat, and how much they
eat. Such detailed tracking makes automating the food journaling
process exponentially difficult compared to step counting or sleep
tracking. While detecting food type (What?) and amount (How
much?) remain as open questions, many advancements have been
made in detecting When people eat and for how long, this was
mainly attributed to wearable ADM systems which employee a
wide range of sensing modalities to track chewing, swallowing,
and hand-to-mouth gestures and use it as a proxy to detect eating
and drinking events. Most of these systems have been developed
and tested in lab environments to validate their functionality, but
ecological validity remains a great challenge for most ADM setups.
Non-technical challenges had also manifested when these ADM
systems were evaluated in public, mainly concerning the social
acceptability of the form factor and privacy concerns. [22, 26].

All these challenges have formed a barrier for researchers to
evaluate the utility and usability of ADM systems because these
metrics are difficult to assess without a reliable end-to-end system.
To allow for just-in-time interventions, the ADM system should also
accurately detect the onset of an eating event, even if it’s short. For
instance, snacking is usually underreported with other journaling
methods despite the high implications on people’s health. Finally,
the ADM system should also have a practical and socially acceptable
form factor to help it make a real impact.

While there is still ongoing research on addressing the when,
what, and how-much questions, this paper asks the question what
values the current state of the art ADM may deliver to the end-user.
In this work, we assess ADM’s role in mitigating the challenges of
typical food journaling techniques.

In this paper, we designed a field study to assess the utility and
usability of FitNibble, a wearable ADM setup designed to recognize
eating events and send just-in-time notifications to remind users to
record meals and snacks at the right time. FitNibble design is based
on recently published research on improving ADM performance in
unconstrained environments. [4, 5, 33]. We mainly based our design
on FitByte, an ADM platform based on eyeglasses form factor [4].
For this evaluation, we built an end-to-end ADM system using
a modified version of FitByte and used an undated version of its
eating detection ML models for real-time classification.

The field study discussed in this paper presents a preliminary
investigation of the utility and usability of ADM systems through a
small-scale deployment intended to demonstrate how augmenting
typical food journaling procedures with our system can reduce
journaling difficulty and improve compliance to the food journaling
process.

From this small-scale deployment, our analysis shows that in one
week FitNibble has improved compliance significantly by reducing
the number of missed events (19.6% improvement, p = .013), and

participants have exhibited explicit dependency on the wearable as
soon as they started using it. Journaling difficulty has also dropped
significantly after using FitNibble (p = .005). The device also helped
most of our participants discover new dietary patterns, especially
with the amount of snacking. Moreover, we started to see signs of
behavioral change due to increased awareness of eating habits. All
these outcomes underscore the importance of ADM in improving
the food journaling experience.

Themain research contributions of this paper can be summarized
in the following points:

(1) An end-to-end open-sourced system includes wearable hard-
ware schematics and firmware, smartphone app, ML model,
and back-end server code. (link).

(2) A field study to assess the utility and usability of a diet
monitoring wearable and provide a list of recommendations
for the design of future ADM systems.

2 RELATEDWORKS
This section will discuss the basic concepts of food journaling and
discuss the common approaches used to monitor diet. We then
review the previous work on automatic diet monitoring and discuss
examples from the literature. We conclude by reviewing previous
ADM field deployments and discussing the need for field studies
that focus on the utility and usability of ADM.

2.1 Food journaling
Food journaling has been an effective method to combat diet-related
diseases and help individuals lead a healthy lifestyle. In previous
studies, researchers witnessed that journalers are more mindful of
their diet and they are more encouraged to avoid unhealthy foods
[18, 31].

Self-report is the most common diet monitoring method. Food
frequency questionnaires and 24-hour recalls represent health ex-
perts’ most typical journaling methods. Self-report methods require
users to keep track of many aspects related to their dietary activities
such as when they eat, what they ate, the amount of food/drinks
consumed, where did they eat, the social context, mood, and Calorie
content [2, 15, 32]. In recent years, the smartphone has become a
popular tool for food journaling; applications like MyFitnessPal
and Weight Watchers have more than one million downloads.

Despite the clear benefits of journaling, it is not widely adopted.
Food journaling requires a high level of engagement from the
user to maintain their logs. The taxing nature of the journaling
process causes fatigue and leads to reduced compliance [3, 13].
In [17] Helander et al. found that of the 190,000 downloads of a
food journaling app, only 3% used the app for more than a week.
Cordeiro et al. [11, 12] have investigated the barriers and chal-
lenges for different food journaling methods and found that loss
of motivation, time commitment, and the considerable effort re-
quired to maintain a journal are the most common reasons people
cite to explain why they stopped journaling before they reach
their goals. When investigating further why journalers miss eat-
ing events, Cordeiro et al. found that the most common reasons
are: forgetting to log, lack of nutrients information, the shame of
unhealthy choices, stigma from journaling in front of others, and
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social context where it is challenging to use phones (e.g., meetings,
or class)

In [11] Cordeiro et al. propose the use of photo-based food jour-
naling, which requires the user to only collect images of the food
they ate throughout the day and label these photos at a later time.
Participants reported that pictures were very helpful to recall food
contents and the social context even if they just took a photo of their
empty plates. This method reduced the number of missed events
due to lack of food information by 38%. This is mainly because users
could use the saved photos to look up content conveniently. This
method doesn’t require users to count calories, making participants
less anxious and reducing missed events because of shame. While
effective, photo-based journaling similarly suffers from some of
the original challenges faced by traditional techniques like users
forgetting to log and stigma.

Among all the reasons users reported for missed events forgetting
to log is the most common. There is a clear need for methods to help
users recall log eating events as soon as they happen. This paper
introduces a wearable automatic diet monitoring system, FitNibble,
which automatically reminds users to log their food by detecting
intake episodes. Our field deployment shows that our wearable
could significantly reduce the number of missed events.

2.2 Automatic Diet Monitoring
In the last two decades, researchers in the wearable community
have developed many automatic diet monitoring systems (ADM) to
help mitigate some of the challenges facing traditional journaling
methods. Most of the ADM research has focused on detecting when
eating events occur, while little have been achieved on identifying
food contents automatically [22, 26, 28]. ADM systems use sensors
that detect one ormore eating actions like chewing, swallowing, and
repetitive hand-to-mouth gestures to identify eating moments. This
section reviews a wide range of ADM systems from the literature.

2.2.1 Detecting Hand-to-mouth Gestures. Observing hand move-
ments as a proxy to detect eating has been a well-studied ap-
proach [1, 14]. Sen et al. [27] used the accelerometer and gyroscope
embedded in an off-the-shelf smartwatch to detect eating events,
and the smartwatch they used has a camera that captures food im-
ages. Lin and Hoover [19] also used a smartwatch inertial sensor to
monitor the number of bites taken during a meal. Thomaz et al. [29]
had participants wear an inertial sensor on their wrist and asked
them to engage in several eating and non-eating activities in a
controller setting and classified between them.

2.2.2 Detecting Chewing. In the literature, several sensing ap-
proaches have been employed to detect chewing. GlassSense [10]
monitors jaw activity from the temple using two load cells embed-
ded in the hinge of custom eyeglasses to detect eating episodes.
Similarly, Farooq and Sazonov [16] used a piezoelectric strain
sensor placed on the temporalis muscle to detect chewing bouts.
Bedri et al. [6, 7] used three infrared proximity sensors embedded
in an off-the-shelf earpiece. The sensors detect the ear canal de-
formation due to movement of the lower jaw bone tip. Chun et al.
[9] used an infrared proximity sensor placed on a necklace and
positioned it pointing upward to detect jaw motion. Rahman et al.
used the inertial sensor placed in Google Glass to detect chewing

[23]. Bedri et al. [5] also used inertial sensors on an earpiece to de-
tect chewing. Zhang and Amft built custom 3D printed eyeglasses
with EMG sensors [33, 34]. The EMG dry electrode is placed on the
eyeglass’s temples to monitor the mastication muscle movement.

2.2.3 Detecting Swallowing. To detect consuming liquids and
solids, one of the most promising approaches is to listen to throat
sounds to detect swallowing. Rahman et al. [24] have used a piezo-
electric microphone on the neck to detect sounds of drinking, eating,
and other activities. In [21] Olubanjo and Ghovanloo have also used
a throat microphone to detect swallowing and developed an algo-
rithm to classify it from other tracheal events. Yatani and Truong
have also used a similar approach to distinguish between a set of
12 activities, including different ways of eating and drinking.

2.3 Challenges with field deployments
In their review paper, Schiboni and Amft [26] discuss ADM chal-
lenges in free-living environments and attribute the lack of reli-
able performance to the difficulty of acquiring ground truth in
unconstrained environments, lack of validation procedures, social
acceptability of the device, and energy efficiency. Some researchers
have addressed these problems in recent years and provided solu-
tions to mitigate these challenges. For example, Zhang and Amft
built custom 3D printed eyeglasses with EMG sensors to detect
mastication from the Temporalis muscle movement [33, 34]. The
system achieved 95% accuracy in detecting eating episodes in un-
constrained environments when tested. Another example is FitByte
[4] that is an automatic diet monitoring system also based on an
eyeglass form factor that utilizes a set of inertial sensors to detect
chewing and swallowing and a proximity sensor to detect hand-to-
mouth gestures. FitByte achieved 92.7% F1-score in detecting both
eating and drinking episodes that lasted for more than 10 seconds
in free-living environments. We chose FitByte as a reference for our
design because it detects all eating actions (chewing, swallowing,
and hand-to-mouth) from a single device. It also doesn’t require
the glasses to be custom fitted for every user, which makes it easier
to deploy. FitByte is also not hard to build because all the sensors it
requires are commonly found in commercial wearables.

To our knowledge, only a few ADM systems have been evaluated
in field deployments of a week or more. These deployments have
used an off-the-shelf smartwatch to detect eating from hand-to-
mouth gestures. Thomaz et.al. [29] have conducted a field study
with one participant for 31 days. The study was focused on eval-
uating the performance of the setup in free-living environments
using an offline machine learning pipeline. The system achieved
71.3% F-score in detecting eating episodes. Turner-McGrievy et.al.
[30] have deployed another watch-based ADM for 4 weeks with
12 participants. The study’s goal was to see the influence of ADM
on users engaged in a weight loss program. The wearable tries
to estimate the calorie count from the number of bites detected.
Participants had to remember to turn on the byte counting App
every time they ate and see the estimated KCalorie count at the end
of the meal. Participants lost 1.2 Kg on average after the study, but
it wasn’t clear how much influence the wearable had on the results.

Morshed et.al. [20] have also deployed a smartwatch based sys-
tem with 28 college students for 3 weeks. This setup had a real-time
recognition system that prompts participants every time it detects
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eating and asks them to answer a few questions about their meal.
The evaluation was limited to assessing the system’s accuracy in
detecting main meals (not snacks). Still, the authors didn’t thor-
oughly investigate the system’s usability nor the impact it had on
the user experience with food journaling.

This paper presents an in-depth analysis of the user experience
with ADM and its impact on compliance with the food journaling
process. Our FitNibble system was capable of detecting meals and
small snacking events in real-time. This feature greatly impacted
the overall experience and significantly improved compliance with
the food journaling process.

3 METHOD
The main goal of this evaluation is to assess the value ADM can
provide to the food journaling experience and understand the sys-
tem’s influence on journaling compliance and other usability and
utility factors.

In this evaluation, we aim to use FitNibble to send just-in-time
notifications to remind the users to do their logs every time it
detects they are eating. We hypothesize that using this approach
can lower the cognitive load required by self-report journaling
methods and reduce the number of logging errors, especially when
it comes to missed events. This tool should significantly improve
the user experience and help them adhere to the food journaling
task.

In our analysis, we used several metrics to assess the user expe-
rience. These metrics include utility, usability, social acceptability,
and any privacy concerns raised from using this system. We used a
combination of quantitative and qualitative methods to assess these
metrics. The results of this evaluation were then used to inform
new design recommendations for ADM systems.

3.1 Study description
To evaluate the utility and usability of our ADM setup, we designed
a field study that allows participants to experience food journal-
ing with and without ADM. In this study, we targeted individuals
interested in understanding their dietary behavior in general and
not focused on specific goals like weight loss. We had the second
criteria only to recruit individuals who wear eyeglasses regularly
because our ADM setup is based on that form factor. We didn’t want
the participants’ experience to be influenced by their unfamiliarity
with wearing eyeglasses all day.

The study has two phases; each phase should last for nine days
(18 days total). This study will also introduce participants to a tradi-
tional photo-based food journaling method. This method requires
the user to take photos of their meals and snacks throughout the
day and review them before going to sleep. This approach deliv-
ers sufficient information to help users understand their dietary
patterns without focusing on minute details like calorie count. We
chose this approach because it requires minimal effort from the
users [11].

This study was designed to target users already familiar with
journaling but struggling with compliance. Therefore, we inten-
tionally did not counterbalance the order of interventions because
our research question focuses on studying the impact on the user
experience after the transition from the status-quo of journaling

without ADM to journaling with ADM. Since all of our participants
did not have prior experience with photo-based journaling, we
used this order to ensure that all participants are familiar with the
journaling process before introducing them to the wearable.

3.1.1 Phase1: Photo-based journaling without ADM. In the first
phase, participants will be asked to use the FitNibble app (check
the description in section 4.3) to log their meals and snacks. In this
phase, the app won’t be linked to the wearable, which will require
the user to remember by themselves to log every time they eat. In
the app, there is a feature that would allow users to set reminders at
specific times. We added this feature to help users remember to log
if they know when they are most likely to eat. To help participants
distinguish between snacks and meals, we defined snacks as any
eating event outside breakfast, lunch, and dinner. Participants can
also log drinking events, but it is not required.

We require participants to use this journaling method for nine
days. In this period, they will have two days to get familiar with
the journaling method and seven days for the actual data collection.
At the end of each day, we asked participants to fill out a short
daily survey for experience sampling. The survey is designed to en-
courage participants to review and reflect on their logs for the day.
For the survey questions, check appendix A & B. At the end of this
phase, we conducted a semi-structured interview with each partici-
pant to understand their experience with this journaling method,
focusing on utility, usability, social acceptability, and impact on
compliance. For the interview questions, check Appendix D.

3.1.2 Phase2: Photo-based journaling with ADM. We introduce the
participants to our wearable ADM setup in the second phase. At
the beginning of this phase, we install the hardware setup on the
user’s glasses as described in section 4.2. We then explain to the
participant how to put on the wearable setup and how to connect
the wearable to the phone app via Bluetooth. This new setup should
allow the app to send reminder notifications to users every time
they think they are eating and ask them to log.

Before starting the study, we ensure the system is working cor-
rectly by performing a functionality test.We ask the user to simulate
an eating event by chewing and performing several hand-to-mouth
gestures in the test. We run this test multiple times to ensure that
the system detects eating events reliably.

Like the first phase, participants will use this journaling method
for nine days (2 days to get familiar with the method and seven days
for actual data collection). Participants are also asked to perform
the same tasks of phase by logging their eating events and filling in
the daily survey. In this phase, we still asked participants to log by
themselves and not rely on the wearable notifications. Participants
were still able to set reminders on the app at a specific time.

At the end of this phase, participants are invited again for a
semi-structured interview to reflect on their experience with the
new journaling method and how it compares to the first one. For
the interview questions, check Appendix D. We used an emergent
thematic coding method to analyze the interview data.

3.2 Measures and study facts
In addition to the data we collected from the interviews and the
daily surveys, we also collected app usage data in both phases.
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This helped us understand how frequently participants used the
app and how often they used specific features, such as the time-
based reminder. We also recorded their responses to the wearable
notifications to help us track the number of true positives and false
positives per day. We recorded none of the logs data and photos to
preserve participants’ privacy.

In addition to the app usage data, we asked participants to fill
in a standard self-efficacy scale survey at the beginning and end
of the study [25]. We collected this data to gauge the influence of
self-efficacy on the user experience and see if their self-efficacy
rating changed by the end of the study.

We recruited 13 participants (five female and eight male) with an
average of 34 years, ranging between 21 and 54 years. We recruited
these participants by posting a public ad on the Craigslist website.
This helped us recruit from the general population of our city. We
also advertised for the study through several university mailing
lists.

Our study population had six university students, and the remain-
ing seven were from diverse backgrounds, including high school
teachers, artists, electrical technicians, and stay-at-home moms. All
participants were screened to confirm they meet the study criteria
and ensure they don’t have any personal relationship with members
of the research team.

Since we conducted this study during the COVID 19 pandemic
and as the city lifted lockdown restrictions, we asked participants to
report their expected activity level. They reported their activity for
the 18 days of the study, including when they worked from home,
left for the office, or ate outside (Appendix C). In our recruitment,
we didn’t require participants to have a certain activity level.

4 SYSTEM DESCRIPTION
4.1 System architecture
This section discusses the overall system architecture of the FitNib-
ble Deployment. The system has three fundamental components:
the wearable, journaling App, and the backend server (Figure 2).
The wearable handles sensor data, preprocesses them, computes the
model features, and sends it to the smartphone via Bluetooth. On
the phone, the custom iOS App we developed handles the features
and sends it to a server that will run predictions on it and send the
results back to the smartphone App. The following subsections will
explain each component and its functionality in detail.

4.2 Wearable
The FitNibble wearable we developed is informed by the original
FitByte design and field evaluation [4]. Appendix E details our
wearable design process and explains all the design decisions made
at every iteration.

The final FitNibble setup has a proximity sensor (VCNL 4040)
hosted in a small 3d printed holder. The holder is attached to the
right hinge of the user’s glasses as shown in figure 3.left. On the
same side, a 3-dimensional gyroscope (MPU9250) is attached to
a flexible adjustable arm linked to the glass’s temple tip (Figure
3.right). Like the original FitByte setup, we used a 12 gauge solid
copper cable, which provided a wide range of fitting possibilities.
These two sensors are connected to the same I2C cable, which
extends to a cloth pocket attached to the back of the user collar

(Figure 3.right). The pocket hosts the Bluetooth Low Energy module
board (Rigado BMD 350, nRF52832, Arm Cortex-M4), the reference
IMU (MPU9250), a 2000 mAh battery, and a battery charging board.
We chose this configuration to ensure that the eyeglass’ weight is
as light as possible and place all the heavy components on the back,
which was inspired by the Earbit design [5]. We designed FitNibble
to be attached to any pair of eyeglasses. In the study, we chose to
use the participants’ glasses to avoid any discomfort from wearing
a different frame.

The BLE module firmware collects data from all three sensors at
10 Hz, preprocesses it, computes the features, and sends it to the
phone via Bluetooth. Like the original FitByte pipeline, we calculate
features from a 5-second window sliding by 1 second. The BLE
module will send the feature vector to the phone every second. We
chose to implement a feature extraction step in themodule to reduce
the data sending rate and conserve power. Like the original FitByte
pipeline, we preprocessed the data. We computed the following
features: entropy, variance, absolute median, zero-crossing count,
zero-crossing variance, and the RMS of each channel (7 channels x
6 features = 42 features).

The only significant change we made to the pipeline was to
reduce the sampling rate for these sensors from 50Hz to 10 Hz
to extend the battery life. We compared the accuracy for the two
sampling rates using the original FitByte dataset and found that
it doesn’t significantly reduce the frame-level accuracy (80% at 50
Hz 77% at 10Hz). Figure 4 illustrates all the steps done in each
component of the system. The overall power consumption of the
system is 25 mAh.

4.3 FitNibble iOS App
On the mobile side, we developed the FitNibbleApp. This iOS app
communicates between the FitNibble wearable, the backend server,
and the user. The app allows users to set time reminders for differ-
ent meals and snacks. To preserve participant privacy, we linked
the FitNibbleApp to a secure off-the-shelf journaling App, Foodility.
The app allows users to do their logs and save the information
away from the FitNibbleApp, so the research team doesn’t access
participants’ private data. Foodility (Appendix E) is a simple food
journaling app on the App Store that allows users to track their
food consumption securely. With Foodility, users can select meal
types, take short notes, and manually log their estimated calorie
intake. Moreover, Foodility possesses the feature of taking a photo
of the food, which most other journaling apps do not offer. In this
way, the participants can reflect upon their diet at the end of the
day by looking at the photos they have taken during that day in the
daily view, where all the pictures of their meals and snacks are in
one place. On the FitNibbleApp, participants can directly launch the
Foodility app to do the journaling by clicking a button. The app also
directly links participants to the required daily survey, and they can
also set a reminder that would prompt them to do the study at a spe-
cific time of the day (usually in the evening). The app also features
setting daily journaling reminders at particular times, although the
participants are not required to use them. After participants have
the wearable installed on their glasses in the second phase, the app
also handles Bluetooth connections to the wearable. Participants
can find a list of Bluetooth devices that fit the characteristics of
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Figure 2: System architecture: FitNibble wearable sends the extracted features over Bluetooth to our iOS mobile App. The
backend obtains this data over REST API and then forwards it for data logging and model prediction of eating.

Proximity sensor

IMU

BLE Module, 
Charging unit, IMU

Figure 3: The wearable has a proximity sensor to detect hand-to-mouth gestures (left), an IMU in contact with the lower jaw
bone to detect chewing (right), and small cloth pocket clipped to the back of the user’s shirt containing the BLEmodule, battery,
and the reference IMU (bottom right).

FitNibble App on iOSFitNibble’s BLE Module Server

Figure 4: The flow of data and information across the the three main components of the end-to-end system.

the wearable after turning on Bluetooth pairing in the app, and
they can connect to the wearable by tapping their device on the
list. If the wearable gets disconnected at any point, the app will try
to reconnect with the wearable once it rediscovers the wearable.
Behind the scenes, the app receives preprocessed features from the
wearable and sends an API request to the server to get prediction
results of whether a participant is eating. If five consecutive re-
sponses infer the participant is eating, the app will send an instant
journaling notification to prompt the user to do the journaling. A

device detection notification would stop detecting eating status for
5 minutes and would resume detection if the user did not interact
with the notification within this timeframe. Clicking on the jour-
naling notification (either manually set or through detection) will
bring the users to a confirmation page, which has three buttons,
"starting journaling", "no, I’m not eating", and "just a test." The users
would click "start journaling" if they are eating, and they will be
redirected to the Foodility app to do the journaling. The user would
click "no" if they are not eating when they receive the notification.
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In the scenario of device detection notifications, clicking no means
that the user received a false positive. The "just a test" button is
there for the user to check the device every time they put their
glasses on. During the second phase, when participants receive a
device detection notification, if they click "start journaling" or "no,
I’m not eating," the device would stop detection for 30 minutes so
that they would not be bothered with more notifications during the
rest of their meals (or snacks). For the study, FitNibbleApp tracks
users’ high-level activities, such as launching the food journaling
app, launching the daily survey, Bluetooth connectivity, and users’
selection on the confirmation page after getting a notification. We
then send these activity logs to the server.

4.4 FitNibble Backend Server
Our backend server is a Python-based Flask framework, which was
custom built to have several functionalities store the device logs
from the FitNibble App, obtain the prediction requests from the
wearable device, and predict based on the requests.

4.4.1 Rest APIs for Data Logging and Eating Detection. We imple-
mented server REST interfaces to our FitNibble backend focused
on logging the user interactions with the FitNibbleApp. This logged
information includes interaction events the participants made when
they clicked the daily survey, set up the daily journaling reminders
for notifications, and launched the Fidelity App to log their meal
events. Each interaction event is stored with participant ID, device
ID, the type of interaction, and the timestamp when the participants
interacted with the app. This logged information is then used to
correlate their interactions with the app as mentioned in 4.3.

In addition to these data logs, in Phase 2 of the study, the pro-
cessed features received from the wearable to the app are then
sent as a Rest API request to the server to get prediction results
of whether a participant is eating. These requests are sent to the
machine learning model to process the prediction requests and
send the prediction back to the app, which is then shown as a
notification.

4.4.2 Machine Learning. We explored several machine learning
classifiers to build reliable models suitable for detecting eating in
real-time. We trained all machine learning models on the publicly
available FitByte dataset [4]. The dataset consists of several activi-
ties such as eating, drinking, walking, talking, and silence. Using
this data, we extracted seven features from the sensor channels cor-
responding to the available sensing modalities on FitNibble. These
seven features are the same as those recommended in the FitByte
paper(i.e., entropy, variance, absolute median, zero-crossing count,
zero-crossing variance, and the RMS of each channel). To compare
classifiers performance, we ran a leave-one-participant-out (LOPO)
cross-validation to measure accuracy at the frame level using a
sliding window of 5 seconds sliding by 1 second. In our compari-
son, we used ten different machine learning classifiers including,
KNN, SVM, Random Forest, AdaBoost, and DNN. Our evaluation
showed that an unoptimized DNN model outperforms all other
classifiers with a frame-level accuracy of 80% (76% precision and
74% recall). Therefore, we decided to use this model for real-time
eating detection.

Figure 6 shows our custom-built DNN model architecture. The
model has 13695 hyper-parameters with 70 hidden layers. The input
layer is a vector with 42 elements, a flattened representation of the
six data dimensions. To feed the data into our neural network, we
shape it so that each person has multiple two-dimensional records,
which holds the data for each of the sensors from the FitNibblewear-
able device. Each record is also associated with one label, which
feeds into the neural network during the training process. Predic-
tion from DNN gets passed to the FitNibble App every second. The
app would detect an eating event if it received five consecutive
eating predictions. We defined the parameters of this aggregating
step after experimenting with different values in a pilot with 5 par-
ticipants. The chosen parameters resulted in the highest accuracy
(precision and recall) for detecting eating episodes.

5 RESULTS
This section presents our findings from the data we collected, in-
cluding the daily surveys, interviews, and App usage data. As we
gave participants two days to get acquainted with the journaling
method, we only included data from the last seven days of each
phase in our analysis. We also present results from 12 participants
as one participant (P2) dropped out after a few days because they
didn’t feel the wearable prototype was comfortable.

We categorized our results under three main aspects: (1) com-
pliance, (2) utility and usability, and (3) social acceptability and
privacy concerns. We summarize our findings from the qualitative
and quantitative data analysis for each aspect.

5.1 Compliance
The main challenge with food journaling is the low compliance
rate. ADM systems are designed to improve compliance by easing
the journaling effort and reducing recall errors. Up to our knowl-
edge, there are no published evaluations for the impact of ADM on
journaling compliance. This section presents our results on how
our ADM system FitNibble impacted the overall compliance by
comparing results from phase 1 (without FitNibble) and phase 2
(with FitNibble).

Figure 7 presents the percentages of days with missed logs as
reported by participants in their daily survey. The pie charts repre-
sent the response to the question “Did you miss logging any events
today? ”. In Phase 2, the percentage of No responses (i.e., No missed
events today) increased by 19.6%, which indicates that participants
were less likely to miss logs. This is a clear sign of improved compli-
ance while using FitNibble. To statically assess this improvement,
we ran a chi-square test of independence between the two phases,
and it showed that the improvement in compliance was significant
X 2 (2, N =163)=6.1478 p = 0.013158.

When investigating the reason behind this improvement in com-
pliance, we wanted to examine the possibility of any carry-over
effects. One assumption that can be made here is this improvement
is due to the familiarity with the journaling method, as participants
have been doing it for more than a week. Therefore, we examined
the reported data over time and looked for any trends that could
have been carried over from phase 1 to phase 2. Figure 8 shows
the percentage of the “No” responses per day for both phases. It is
clear from the data that compliance did not improve over time in
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Figure 5: This figure shows the main page of the FitNibbleApp and explains the main functionalities available on it, including
setting reminders and receiving notifications when eating is detected.
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Figure 6: FitNibble’s DNN model topology.

                Phase 1: without FitNibble                                  Phase 2: with FitNibble

Figure 7: Percentage of days with missed logs before and after participants starts wearing FitNibble.
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Average = 54.7%

Average = 77.4%

Figure 8: The daily percentage of No responses for phase 1 and phase 2.

Phase 1, and there is no visible learning effect. While in Phase 2, we
witnessed a big jump in compliance from the get-go ( Phase1-day 7:
58.3% → Phase2 - day 1: 91.6%). The average percentage per phase
has also improved with FitNibble (54.7%→ 77.4%), and it’s worth
noting that all the reported percentages in phase 2 are above the
average of phase 1. All these findings indicate no carry-over effect
between the two phases.

To investigate further the reason behind this sudden improve-
ment in compliance, we asked participants in the exit interview
why they started to report more Nos in the second phase. Most par-
ticipants attributed this improvement to their experience with the
wearable. P10’s response is representative in this regard: "I believe
it was because the wearable was sending me notifications every time
I eat.".

Another metric we used to assess FitNibble’s contribution to the
improved compliance was examining the number of times partici-
pants used the wearable notifications to open the app vs . directly
opening it from the home screen. This data would explain how
often participants depended on the wearable notifications in doing
their logs. After analyzing the logs, we found that nearly half of
the recorded eating events were initiated by a wearable notifica-
tion. This result indicates that FitNibble played a significant role in
reminding participants to do their logs.

These results support the argument that FitNibble is the main
factor behind the observed improvement in journaling compliance.

After analyzing the interviews’ data, we found the following
emerging themes related to compliance.

5.1.1 Forgetting to Log. Among all the reasons participants re-
ported in phase 1 for missing to log Forgetting to log was the most
cited. This coincides with the findings of Cordeiro et al. [12] in
manual food journaling studies. P9 said, "Ah, I think it’s like un-
consciousness. I just forgot that I need to journal while I am eating".
Participants also cited other reasons like being busy or distracted.
For example, P8 also said, "Most of the time I forget, and there’s some
time. I’m just too busy. I don’t have time to record snacks because I
just grab a banana and go out.". Others have cited changes in routine
to be the reason for missed events. "I visited my girl in college for

a few days, so my routine has changed, and I missed a couple of
events because of that" (P1). In phase 2, participants’ compliance
improved, and the reasons they cited for missing events were dif-
ferent. One common reason was the The wearable didn’t notify me
For example, P1 mentioned "Uh, I missed. I didn’t do it at lunch and
I didn’t do it because for some reason it did not detect." and P13 "like
one day because I was wearing my contact lens and then I just have
back to back meetings, so I didn’t have the chance to put my glasses
on till like late afternoon and I missed to log my lunch."

5.1.2 Missing snacks. Another common theme from phase 1 inter-
views is that most participants realized that they missed journaling
small meals such as snacks more than main meals. P3 mentioned
"when I have a little snack that’s like really easy for me to miss
’cause I won’t be thinking about it." and P12 said "Yeah, I think I’ve
missed pretty much all the snacks.". In phase 2, we saw the complete
opposite; participants became aware of their snacking habits. For
example, P4 mentioned in one of the daily surveys "Today, the device
recognized that I was eating a few almonds. This was a snack that I
didn’t plan or realize that I was eating; it was somewhat automatic
behavior after visiting the kitchen. I wouldn’t log that normally, but
it was nice that it could catch it.," and also in their daily survey
P11 mentioned the following memorable experiences "The device
reminded me to log both snacks when I didn’t even think about it,"
and "I think for a snack I am relying on the glasses now.".

Looking at the daily survey data, we notice an increase in the
number of reported snacks in phase 2, but the number of reported
meals was almost the same between the two phases (1). To eval-
uate the difference between journaling with and without FitNib-
ble wearable, we ran a repeated measure ANOVA 1 test for both
meals and snacks for both phases and the differences were not
significant (Fmeal(2, 83) = 0.39,pmeal = 0.844, Fsnacks(2, 83) =
0.39,psnacks = 0.99).

5.1.3 Depending on the wearable’s notifications. In the second
phase, the participants depended on FitNibble in the journaling

1We chose repeated measures ANOVA because it is fairly "robust" to violations of
normality assumption which is common in small data samples.
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process. Note that we explicitly instructed participants not to rely
on the device and continue to log events when they remember,
but most participants soon after using the wearable didn’t follow
our instructions. When asked how much they depended on the
wearable in this phase P13 answered "I think like 90% of the time. I
do the logs after it notifies me", and P8 said "Yeah, in general, I feel
like it frees me from keeping paying attention to whether I’m eating or
not. For the journal, I can just rely on it. I fully rely on this device. So
if the notification is not on time, I just miss it." These quotes support
the hypothesis that the improved compliance in the second phase
was mainly due to the wearable and the notifications it sends and
not any other factors.

Finally, we referred to the self-efficacy score of participants,
which we evaluated at the beginning and the end of the study. We
noticed a slight increase in the average scores (beginning: 3.7, end:
3.85), but we didn’t find any correlation between these scores and
the participants’ level of compliance.

5.2 Utility and Usability
This section discusses the usability of all the features introduced in
the FitNibble App/Foodility App and the FitNibble wearable. We
will also discuss the perceived utility of the setup and highlight
some of the emerging themes from the data.

5.2.1 Time reminders has low value. One of the features we intro-
duced in the FitNibble App allows users to set logging reminders
at a specific time if they know they are most likely to eat at a par-
ticular time. This feature was available in both phases of the study,
but the general feedback we received was that participants didn’t
find it helpful most of the time. This is evident in the daily survey
responses when asked participants to state how often they used
the reminder feature that day. From the data, we found that this
feature utility rating is trending low in both phases 1. We noticed
that more participants found the feature helpful in phase 2. Still,
when investigating further, the interview data showed that the
participants were confusing the use of the wearable notifications
and the time set reminders. We ran a repeated-measures ANOVA
to evaluate the difference between the two phases, and the results
were significant(F (2, 83) = 8.324,p = 0.005).

When asked about the reasons behind the low utility of the
feature, Some participants in the first phase mentioned that they
would like to set the reminder once and have it repeat every day.
We implemented this change to the feature, but the utility didn’t
improve by much. Participants explained that usually, they don’t
have a fixed schedule, which makes it challenging to plan when
they will have a meal or a snack. For example, P13 mentioned "It
might be useful, but not to people who are students because students
they have different schedules every day, so we don’t have a fixed time
for eating.". P7 said, "I didn’t use the reminders because my mealtime
is not fixed."

5.2.2 Positive experience with the wearable. When evaluating the
user experience with the FitNibble wearable, most participants said
it improved their experience and attributed that to the smooth
experience the wearable provides to do the logs. P1 said "Much
better than the first. I like that I didn’t have to remember to log. The
device prompted me with the notification, and then it automatically

opened that app so that I could easily log, that was very, very spe-
cial", and P11 said "I do journal more now. It definitely reminds me
most times, so I don’t miss". We can also recognize from the daily
surveys that the journaling difficulty has dropped in the second
phase 1. Figure 9 shows the trends between the two phases. We ran
a repeated-measures ANOVA to evaluate the difference between
the two phases, and the results showed that the change in using re-
mainder functionality was significant (F (2, 83) = 5.524,p = 0.021).

In the second phase, we asked participants to report how often
the wearable notifications helped them today in the daily survey.
The average rating for this feature was 3.3± 0.8 (above midpoint)1.

All these results point to the positive experience with the wear-
able, but a few participants didn’t view the experience as positive
as others. We noticed that the common attribute for participants
in that group is they are very punctual at journaling even before
using the wearable. For these 4 participants, the wearable wasn’t
helping them because it sends notifications after the user starts eat-
ing. They are used to doing the log before they eat, so the wearable
notifications bother them because it comes after they have already
made the logs. P4 said "I wouldn’t like to keep using it, because I do
all the work and it’s not giving me back too much, because I have to
remember to log before the meal, and I’m good at it.", and P6 said "I
don’t think it ever reminded me in a way that I would have forgotten.
It was mostly just background noise.". This feedback highlights that
ADM journaling provides value to forgetful and less punctual users.
Still, for users who don’t have these issues, journaling with ADM
negatively affects their experience.

5.2.3 Variable perception of accuracy. When it came to how partic-
ipants perceived the accuracy of the wearable notifications, there
was a split between the good and bad responses. 61.9% of the daily
response found the accuracy to be average or above average, while
38% of the responses found it below average. To understand the
reasons behind this split, we looked at the app usage data as we
keep track of how many times participants responded to notifica-
tion with Yes (true positives) and how many times they responded
with No (False positives).

After analyzing the data logs, we found that half of the partic-
ipants received 0 to 5 false positives per day, and the other half
received 6 to 11 false positives per day. Figure 10 shows the distri-
bution of participants according to their average false positives per
day. After reexamining the rating data, we found that participants
tend to give a lower rating if they receive six or more false positives
per day, which explains the split in perceived accuracy.

We also investigated how perceived accuracy can influence the
overall user experience. Despite the high false-positive rate for
some participants, they still saw value in using the wearable. For
example, P11 who was receiving on average 11 FPs/day said "The
device reminds falsely often, but that helped me remember to log the
food. The device also helped quite a bit when it comes to snacks outside
of the regular routine."

One reason that can explain the variable precision across partici-
pants can be the improper placement of thewearable or loose-fitting.
This might explain why the accuracy is user-dependent. At the be-
ginning of phase 2, we trained participants on how to put on and
take off the wearable and ensure proper fit, but there is no way for
us to know how well they complied with our instructions in the
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Phase 1: without FitNibble
Phase 2: with FitNibble

Phases 

Figure 9: Journaling difficulty before and after participants start wearing FitNibble.

field. Further investigation is required to understand the factors
influencing wearable precision.
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Figure 10: Histogram of study participants based on the av-
erage false positives they receive per day.

Since it’s difficult to monitor false negatives in a long-term field
study, we relied on participants’ reports in the daily survey and the
interviews. Most participants didn’t report false negatives, and they
think the system recall was high. For the few reported false-negative
incidents, participants indicated a connection or a fitting problem
most of the time. P13 said, "one thing I notice for the false negatives
it’s probably just because I’m not wearing my glasses properly."

5.2.4 Increased awareness of dietary patterns. One central utility
theme in the study was increased awareness. Participants have
reported in both phases of the study that they are becoming more
aware of their diet after they started journaling. For example, P3
said, "I am more mindful and aware of what I was eating, and I guess
a little bit more so with this (the wearable) because I wouldn’t really
think about snacks until this thing would notify me." and P5 said
"I’m trying out a variety of food that I wouldn’t really think about
earlier. I think that’s also attributed to the food journaling activity and
to the device.". Many participants also indicated that they learned
something new about their diet. For example, P12 said "I realized
that I eat irregularly at night which will range from 5:00 PM to 9:00
PM", and P3 said "I definitely don’t eat as much as I should. Uhm, at
least during this point in the summer ". We also saw some trends of
behavioral change due to increased awareness. P5 said " It makes
me more conscious about what I eat throughout the day, and when
I want to snack, I think that I’ll have to keep track of it in my food
journal, and then I see myself not really following my diet, so I don’t
snack.".

5.2.5 Desires for a finished product. During the exit interview, we
asked participants, "What would it take for you to use this device in
your daily life?" The aim behind this question was to understand
what barriers can prevent ADM from being widely adopted. Most
participants said they would use FitNibble if we improved the pro-
totype to a finished product quality. Some suggested changes to
the form factor to enhance comfort. For example, P1 said, "If this
device didn’t have this cable coming out of it. If I could just slip it into
my glasses, or there’s just a little clip here, so it’s easy if I wanted to
take it off.", and P3 said "it’s not waterproof. So I remember that it
was raining one day and I came to campus. So I had to wait for the
resin to stop so I could go home". Participants also suggested changes
to the "Foodility" journaling App, such as reducing the number of
clicks required to do the logs and adding a weekly view to help
users capture trends across multiple days. One other desired feature
was integrating other health-related journals like fitness tracking,
glucose level, calorie counting, and mood logs.

5.3 Social Acceptability and Privacy Concerns
Here, we mainly relied on the interview and the daily survey data.
The main emerging themes from the data are summarized below.

5.3.1 Social acceptance. The central theme under this topic was
the wide acceptance of the FitNibble app and wearable. Most partic-
ipants didn’t perceive any discomfort in the social setting as people
around them were either indifferent about the setup or found it
"cool". P1 mentioned "Really cool, yeah. They all think it’s really
cool!", and P9 said "Yes, I did it in front of my friends and they feel
normal about it. I just told them I was in a research study". Not all
participants had the same experience. P11 mentioned that doing
the food journaling added some social pressure on his girlfriend
because she wasn’t paying attention to her diet "When I did this food
journaling with my girlfriend, I became more careful not to create
any social pressure". P6 found it awkward to pull their phone every
time they eat in a social setting "It was just a little bit too weird to
have someone says "hey you want some fries", and for me to say "OK
but I’m gonna take a photo of them first""

In the second phase, most participants found the current FitNib-
ble design makes it invisible to others. For example, P7 said "Most of
the time I think people don’t even notice" and P5 said "No one really
looks at you, and hiding the wire makes it even less noticeable. If it is
more noticeable or larger, it will make a total change".

5.3.2 Social collaboration. This is one of the exciting themes we
found in the data. Some participants mentioned that they depended
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Metric Phase 1 Phase 2

Number of reported meals Avr = 2.2 ± 1.01meals/day Avr = 2.2 ± 0.74meals/day
Number of reported snacks Avr = 0.54 ± 0.83 snacks/day Avr = 0.77 ± 0.92 snacks/day
Journaling difficulty Avr = 3.1 ± 0.9points Avr = 3.5 ± 0.7points
Time reminder’s utility Avr = 1.5 ± 0.5points Avr = 1.8 ± 0.3points
Wearable notification utility — Avr = 3.3 ± 0.8points
Perceived accuracy rating — Avr = 2.8 ± 0.6points

Table 1: Summary of the daily survey results (all rating questions has a 1-to-5 likert scale).

on their friends and family to remind them to log meals in the first
phase. P3 and P1 talked about that "I told some of my friends about
it, and some of them actually reminded me a few times.", "I would say
this maybe twice a day to whomever I was with. "I have to remember
to do this, I have to remember"". After using the wearable in the
second phase, there was no mention of social collaboration. P3
mentioned that he started to rely more on the wearable. "Usually,
my friends remind me because when I’m with them it’s when I’m
mostly distracted, but in this phase they didn’t because this thing tells
me to do it anyways".

5.3.3 Having complete control over the wearable camera. As we
mentioned in Section 4.2, we were considering including an on-
board camera in the FitNibble design to capture images of the
food when eating is detected. In the exit interview, we talked to
participants about this feature and asked if they would consider
using it or not. The majority of participants found the feature useful
as it minimizes the effort to do the log. One good example is P7, who
refused to wear the device because he thought it had an onboard
camera and demanded it be removed from the wearable. However,
after using FitNibble in phase 2, he changed him opinion and said,
"It would be good to have if it can be used in a more controlled way,
like only when I’m eating", "I see why it would be useful. I don’t want
to take my phone from my pocket when my hands have food on them".
Most participants agreed to use the camera if they had complete
control over this feature. For example, P13 said, "If the camera is
there we need to be very cautious about it. I would prefer not to use it
unless I know where it saves the data and when it’s on. I don’t want it
to accidentally trigger in the bathroom".

6 DISCUSSION
This paper tried to assess the value an ADM system can provide
to the end-user. The results of this preliminary investigation high-
lighted the potential of ADM in increasing compliance to food
journaling and improving the user experience with the process. In
this section, we will go over the primary outcomes from the study,
provide a list of design recommendations for the next generation
of ADM systems, and discuss study limitations and future work.

6.1 Main outcomes
In a period of one week, our results showed around a 20% drop in
days with missed events, and we saw a significant improvement in
compliance with p = .013158. The main reason participants cited
for this improved compliance was the reduced cognitive load on
the user after using the wearable ADM. For example, P5 mentioned

"Compared to the first phase, I don’t have to think about it." After
using FitNibble, participants became more aware of their dietary
behavior, especially when snacking, as most missed small eating
events.

While the rate for false positives was variable across participants,
the overall perception of accuracy leaned towards the positive
side. Also, journaling difficulty dropped significantly after using
FitNibble, and most participants saw value in using the wearable.
Most participants said they would use FitNibble in their daily lives if
it was redesigned to have a more compact form factor and finished
product features (e.g., waterproof, no cables, and lightweight ). This
feedback indicates no significant barriers to adopting this wearable
ADM as a product for daily use.

Many participants felt that doing food journaling in public was
socially acceptable, and even some participants relied on their
friends and family to remind them to log. This finding is a sign that
now there is less stigma associated with photo-based journaling.
Our participants believe this can be attributed to the wide adoption
of this type of journaling in social media platforms like Instagram
and Snapchat.

Finally, in our evaluation, we investigated using a wearable cam-
era to help users take photos of their food. While all participants
felt this feature would raise many privacy concerns, after using
FitNibble, most of them saw the value of using it to reduce the
journaling effort, P5 said "You still have to take the picture yourself
with your phone, it’s not really cutting that part cuz it’s not taking
a picture for me", but to accept the camera feature participants de-
manded complete control over its activation. So when the device
detects they are eating, it should ask for permission to turn on the
camera and take the photo.

6.2 Design Recommendations
In this section, we discuss the lessons we learned from this study
and how it can inform the design of the next generation of wearable
ADM systems.

6.2.1 Targeted users. Our evaluation found a clear difference in
responses between participants who are punctual with journaling
and those who are not. Participants who regularly missed to log
events have benefited the most from the wearable ADM system.
On the other hand, participants who didn’t suffer from this issue
found low value in using it. This group was also more sensitive to
false positives and found device notifications annoying. Therefore,
we recommend that designers keep these differences in mind when
defining their targeted end-users.
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6.2.2 Acceptable range of error. One other question we tried to
answer in this evaluation was "What is acceptable number of false
positives per day?". The feedback we received from participants was
very similar despite the discrepancy in the false-positive rates. Most
participants recommend amaximum of 5 false positives per day, and
they believe if this number gets close to 10, they would be annoyed.
ADM designers should keep in mind to clearly explain to the user
what counts as a false positive and what doesn’t. For instance, in
our study, a few participants indicated that they received false
positives when chewing gum, biting their nails, or drinking. Our
model design considered all these actions to count as eating events.
These participants were not fully aware of that, which influenced
their experience with the wearable.

6.2.3 Improving interaction. Through the interviews we conducted,
we received many recommendations on improving the interaction
with thewearable. For example, some suggested using voice recogni-
tion to communicate between the App and the user. In this scenario,
the user can respond to notifications with voice commands like "Yes,
I’m eating" or "No I’m not" also they can do their logs by recording
a short audio message that can be converted to text on the journal.
Another proposed feature was on wearable notifications, which
means the user prefers to get the notifications on a wearable and
not on the phone. Participants mentioned that when they eat at
home, they don’t usually have their phone with them to miss the
notifications. One participant liked that FitNibble sent notifications
on her watch, and another suggested receiving the notifications
on the glasses. Several participants also recommended we review
the 30-minute snooze notifications rule. One participant mentioned
that sometimes she would get a notification 5 minutes before she
started eating and would mark it as a false positive, but when she
eats, she doesn’t get a notification because the device was snoozed.
Worth noting that this type of false positive was still helpful to the
participant, because it reminded her about journaling a fewminutes
before she ate, so she still remembered to log. Another participant
mentioned that she has long eating events that can extend for more
than an hour and found the repeated notifications every 30 minutes
to be annoying. One way to solve this issue is to give users a choice
on how long they would prefer to snooze the notifications.

Finally, the experience our participants had with time set re-
minders showed low value for this feature. Many participants had
flexible schedules, and setting a recurring reminder didn’t help
them most of the time. This finding highlights the value of an ADM
system such as FitNibble, in improving the user experience with
food journaling.

6.3 Limitations and Future work
The outcomes of this study highlight the values ADM has in im-
proving the food journaling experience. That being said, this study
has limitations and can only be described as a small-scale deploy-
ment intended to demonstrate how augmenting typical food jour-
naling procedures with our system can help improve compliance.
We understand that the current study design does not provide a
counterbalanced evaluation, and the order effects can influence the
presented results. Therefore, the next step after this preliminary

investigation is to verify these findings in a fully-fledged between-
subjects experiment to demonstrate the superiority of journaling
with ADM versus self-report.

7 CONCLUSION
In this paper, we present an in-depth analysis of the utility and
usability of FitNibble. Our long-term field deployment allowed
participants to experience the difference between traditional self-
monitoring methods and journaling with the aid of an ADM system.
Our analysis indicated that participants relayed on FitNibble to re-
mind them of logging whenever they start eating. Participants
indicated that using textitFitNibble significantly reduced the cogni-
tive load required to maintain their journals, as they don’t need to
pay attention to their activities constantly. This feature FitNibble
helped improve adherence to food journaling by significantly reduc-
ing the number of missed events (19.6%improvement ,p = .0132).
Participants believe that journaling with FitNibble made them more
aware of their dietary behavior, especially when it comes to snack-
ing, which has high health implications but is usually missed by
self-monitoring methods. Our participants saw the value of journal-
ing with ADM and are willing to use this technology in its finished
product form. All these outcomes highlight the potential of ADM
in improving the food journaling experience and making it wildly
adopted at the same level of fitness tracking.
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