Yuchen Liang

yuchenl3@andrew.cmu.edu | github.com/yliang412 | linkedin.com/in/yliang412

Education

Carnegie Mellon University

2020/08 - 2024/05

Bachelor of Science in Computer Science • Concentration in Computer Systems

Pittsburgh, PA

Relevant Coursework:

Operating Systems Design and Implementation • Advanced Database Systems • Distributed Systems

• Parallel Computer Architecture • Algorithm Design and Analysis • Program Analysis • Machine Learning

Research Experience

CMU Database Group, Adaptive Query Optimization github.com/cmu-db/optd

2023/11 - present

Advisor: Dr. Andy Pavlo

Pittsburgh, PA

• Building optd, a Cascades-style cost based query optimizer framework that uses runtime statistics to adaptively guide plan search during re-optimization.

CMU Database Group, PostgreSQL Extension Manager github.com/cmu-db/pgextmgrext

2023/02 - 2023/05

Advisor: Dr. Andy Pavlo

Pittsburgh, PA

• Explored database extension ecosystems with a focus on PostgreSQL hooks. Formulated extension management framework for compatibility checking and dependency management. Designed better APIs for easy, safe, and extensible PostgreSQL extension creation and management.

Publication

Abdelkareem Bedri, **Yuchen Liang**, Sudershan Boovaraghavan, Geoff Kaufman, and Mayank Goel. 2022. FitNibble: A Field Study to Evaluate the Utility and Usability of Automatic Diet Monitoring in Food Journaling Using an Eyeglasses-based Wearable. In *27th International Conference on Intelligent User Interfaces (IUI '22)*. Association for Computing Machinery, New York, NY, USA, 79–92. https://doi.org/10.1145/3490099.3511154

Work Experience

Neon github.com/neondatabase/neon

2024/06 - 2024/12

Software Engineering Intern

Remote / Pittsburgh, PA

- Neon is a managed PostgreSQL platform built on top of a key-value storage engine that supports point-in-time recovery, autoscaling, and copy-on-write database branching. It is an open-source alternative to Amazon Aurora.
- Ephemeral Endpoint Support in Storage. Implement a leasing mechanism to temporarily block the background task from garbage-collecting data needed by the lightweight, short-lived endpoints. Directly enabled safe usage of time-travel query, branch restoration, and other customer-facing features.
- **Direct IO for the Storage Engine**. Eliminate all kernel page cache usage during IO to ensure predictable latencies and avoid extra memory copy. Under high memory pressure, we achieved a 20% decrease in CPU utilization while maintaining similar latency for read operations.

Amazon Web Services, OpenSearch Serverless

2023/05 - 2023/08

Software Development Engineer Intern

Boston, MA

- OpenSearch Serverless is a managed search and log analytics service that handles petabyte-scale data operations without the need to manually provision, manage, and scale computation resources.
- Implemented workflows for dynamically rebalancing replicas among indexing workers to ensure worker health and efficient ingestion. Demonstrated improvement in balance metrics after adding the workflow to the pipeline.

Argo AI 2022/05 - 2022/08

Software Engineering Intern (Simulation)

Pittsburgh, PA

- Integrated new features into Argo's autonomous vehicle simulation pipelines to support the latest on-vehicle features.
- Investigate solutions to utilize public traffic datasets for automatic scenario generation.

Teaching Experience

Database Systems, Head Teaching Assistant 15445.courses.cs.cmu.edu

2022/08 - 2024/05

Carnegie Mellon University

Pittsburgh, PA

- Developed the SQL homework to help students learn advanced SQL features while getting familiar with two full-featured DBMS, SQLite and DuckDB.
- Lead the development of the BusTub course projects.

Selected Projects

Bustub github.com/cmu-db/bustub

2022/08 - 2024/05

- Developed query execution course projects and improved testing infrastructure in the Bustub RDBMS.
- Designed and supported order by clause, top-k optimization, left outer joins, and composite-key hash joins in the query optimization and execution layer.
- Redesigned the disk-based extendible hash index project to support multi-level directories and thread-safe access.

TicTacTOS 2023/10 - 2023/12

- Implemented a UNIX-inspired preemptive kernel on x86 architecture from scratch. The kernel enables private process virtual address space through paging, supports multi-processing and multithreading through a scheduler, uses a zero-fill-on-demand allocation strategy, and provides a system call interface to the user.
- Developed a Pthreads-like thread library that allows users to run multithreaded C programs. Implemented a thread management interface and synchronization primitives like mutex, condition variable, semaphore, and reader-writer lock.

Concurrent Adaptive Radix Tree yliang412.github.io/cart

2024/04 - 2024/05

• Implemented a concurrent Adaptive Radix Tree, an efficient in-memory index data structure, using the optimistic lock coupling synchronization approach. Achieved 2x speedup for writer-only low contention scenarios and mixed read/write high contention scenarios.

Awards

Dean's List, School of Computer Science

Spring 2022, Spring 2023